
Jawa: Web Archival in the Era of JavaScript

Ayush Goel1, Jingyuan Zhu1, Ravi Netravali2, Harsha V. Madhyastha1

1University of Michigan, 2Princeton University

Abstract—By repeatedly crawling and saving web pages over

time, web archives (such as the Internet Archive) enable users

to visit historical versions of any page. In this paper, we point

out that existing web archives are not well designed to cope

with the widespread presence of JavaScript on the web. Some

archives store petabytes of JavaScript code, and yet many pages

render incorrectly when users load them. Other archives which

store the end-state of page loads (e.g., screen captures) break

post-load interactions implemented in JavaScript.

To address these problems, we present Jawa, a new design for

web archives which significantly reduces the storage necessary

to save modern web pages while also improving the fidelity with

which archived pages are served. Key to enabling Jawa’s use at

scale are our observations on a) the forms of non-determinism

which impair the execution of JavaScript on archived pages,

and b) the ways in which JavaScript’s execution fundamentally

differs between live web pages and their archived copies. On a

corpus of 1 million archived pages, Jawa reduces overall storage

needs by 41%, when compared to the techniques currently used

by the Internet Archive.

1 INTRODUCTION

URLs are brittle pointers to information on the web. Over

time, a page may cease to exist at the URL where it was

originally available [44, 62] or the content available at that

URL might change due to the page being modified [58, 36].

Therefore, web archives play a key role in the web

ecosystem, enabling users to lookup the content that ex-

isted at any particular URL at various times in the past.

Web archives are used for a wide variety of use cases,

such as web-data analytics, genealogical analysis, and even

as legal evidence [40]. To support these uses, a number

of organizations—cultural heritage institutions, national li-

braries, and public museums—operate web archives to en-

sure long-term preservation of content on the web. A re-

cent survey estimates that there are 119 web archives in the

United States alone [35].

The largest and most popular of these archives, Internet

Archive (IA), has archived over 600 billion web pages to

date, storing data in excess of 100 petabytes [13]. It repeat-

edly crawls web pages over time and saves many snapshots

of every page. For every page snapshot, IA first downloads

all resources (e.g., HTMLs, CSS stylesheets, JavaScripts,

images) on the page). It stores these resources after rewrit-

ing all URL references to point to the copy hosted by the

archive. When a user wants to later view any stored snapshot

of a page, the user’s browser loads the snapshot from IA in

the same manner as it would load any page on the live web.

In this paper, we argue that this modus operandi no longer

suffices due to the preponderance of JavaScript on modern

web pages [18, 38, 53]. Specifically, the widespread use of

JavaScript hinders web archives from satisfying two of their

primary objectives: 1) to capture and save as much of the

web as feasible, and 2) to ensure that archived page snap-

shots faithfully mimic the original page.

• Higher operational costs: First, the total number of bytes

on the median web page has more than tripled over the

last decade [10]. A significant contributor to this increase

has been the increased usage of JavaScript. For example,

across Internet Archive’s copies of the home pages of 300

randomly sampled sites, we see that JavaScript accounts

for 44% of the bytes on the median page in 2020, as com-

pared to 20% in 2000 (§2). Since web archives are typ-

ically run by non-profit institutions with limited budgets,

needing to store more bytes per page reduces the number

of pages they can crawl and archive.

• Poor page fidelity: The archived copies of many

JavaScript-heavy pages render with missing images and

improperly laid out content (§2.1). This occurs due to

the non-deterministic execution of JavaScript; when a user

loads an archived copy of a page, the resource URLs re-

quested by the user’s browser can differ from those saved

by the archive when it crawled the page. Consequently,

the web archive returns errors for some of the requested

resources. Due to the complex dependencies between the

resources on a page [65, 34, 54], one failed resource fetch

often has a cascading effect on the rest of the page load.

The challenge in holistically addressing both problems is

that trying to reduce storage overheads by not saving some of

the JavaScript found on crawled pages risks further degrad-

ing fidelity. A web archive could statically or symbolically

analyze the JavaScript code on every page to identify what

subset is necessary to preserve correctness in all potential

loads of the page. However, the computational overheads of

such methods [42, 48] render them impractical at the scale

of a web archive, e.g., the Internet Archive crawls roughly

5000 pages per second [64]. To jointly address JavaScript’s

adverse impacts on storage and fidelity using computation-

ally lightweight methods, we observe and leverage three fun-

damental ways in which JavaScript’s execution on archived

pages differs from that on the live web.

First, a significant fraction of JavaScript is dedicated to

either sending user data to a page’s origin servers or process-

ing dynamically constructed server responses, e.g., to enable

users to post comments or to push notifications. Any such

functionality cannot work on archived pages, and therefore,

the associated code need not be stored by web archives. For-

tunately, the JavaScript code on any page is typically parti-

tioned into several files, and we find that most of the code

that will be non-functional in the context of a web archive

is cleanly compartmentalized into a subset of these files that

exhibit identifiable patterns in their URLs. Consequently,

we show that web archives can efficiently, and safely, prune

unnecessary JavaScripts by relying on URL-based filters to

identify and discard JavaScript source files.

Second, many lines of JavaScript code are executed only

in certain control flows, e.g., when a page is loaded on a

smartphone, and not on a desktop. But, among the vari-

ous sources of non-determinism that dictate whether or not

a specific line might get executed, some sources are ab-

sent in loads of archived page snapshots; clients maintain

no state across loads and server responses for the same re-

quest URL do not vary. Moreover, a web archive should

actively eliminate those sources of non-determinism which

can cause clients to request different resource URLs than

those crawled. Thanks to the resulting reduction in non-

determinism, we find that much of the JavaScript code on

an archived page will never be exercised in any load of that

page, making it moot for a web archive to store such code.

Lastly, a critical use of JavaScript is to enable users to in-

teract with a page after the page’s load has completed. On

live pages, identifying all the code used to support such in-

teractions is generally challenging because the code that is

exercised varies based on how users interact with the page.

For example, the input given to a search bar determines the

server’s response; based on the number of search results,

JavaScript for paginating the results may or may not get exe-

cuted. In contrast, we find that the subset of interactions that

do work on archived pages (e.g., navigational menus and im-

age carousels) distinctly differ from those that do not with

respect to the properties of the page state they access. This

greatly simplifies the task of identifying the code necessary

to preserve post-load interactions.

Based on our three observations, we design and implement

Jawa (JavaScript-aware web archive), a system for crawl-

ing and saving web pages. Jawa enables web archives to

save many more pages than they could today for the same

cost, e.g., it reduces the total amount of storage necessary

to store a corpus of 1 million web pages by 41%. Impor-

tantly, Jawa enables this reduction both while increasing the

rate at which pages can be crawled by 39% and significantly

improving the fidelity of archived pages: for the vast ma-

jority of archived pages, Jawa ensures that the page is ren-

dered in a manner identical to how it was when the page was

crawled, and all page functionality that can possibly work

on an archived page does work. Source code for Jawa, in-

cluding scripts to reproduce the key results in the paper, are

available at https://github.com/goelayu/Jawa.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 (JavaScript bytes)/(Total bytes on page)

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

2000
2010
2020

Figure 1: Across the landing pages of 300 sites, distribution of

fraction of bytes on the page accounted for by JavaScript.

2 BACKGROUND AND MOTIVATION

As mentioned earlier, the Internet Archive (IA) is the largest

and most popular web archive in the world today. For every

page that it crawls, IA stores all the individual resources on

that page (such as HTMLs, CSS stylesheets, JavaScript files,

and images) in the Web ARChival format (also known as

the WARC format [22]). Client browsers can load archived

pages from IA’s Wayback Machine [24] in a manner identical

to how they do on the live web. When the Wayback Machine

receives a request for any resource, it looks up an internal

index to locate the WARC record for this resource and then

responds along with relevant HTTP headers. IA rewrites all

resource files so that all statically embedded URLs point to

IA’s web servers. For URLs which are dynamically gener-

ated via JavaScript, IA rewrites them on the fly using client-

side API shims.

This architecture sufficed when IA began operating two

decades ago. However, the web today is very different.

In particular, JavaScript (JS) has become significantly more

common. For example, Figure 1 shows that JS accounts for

44% of the bytes on the median page today; up from 20% in

2000. In this section, we show that this increase in JS hinders

the ability of web archives to meet their two primary objec-

tives: 1) to crawl and capture as much of the web as possible,

and 2) to preserve page fidelity, i.e., when an archived page

is loaded by a user, it should ideally match the page as it was

crawled, both in visual (how the page looks) and functional

(user interactions supported on the page) aspects.

To support our claims, in this section (and in the rest

of the paper), we consider pages from 300 sites, compris-

ing 100 randomly chosen sites from each of three ranges

from Alexa’s site rankings: [1, 1000], [1000, 100K], and

[100K, 1M]. Using these 300 sites, we construct two cor-

puses. Corpus3K contains one of IA’s copies from September

2021 for 1 landing and 9 internal pages per site. Corpus1M

contains 3500 page snapshots for each site out of all of IA’s

page snapshots from September 2020. Note that both cor-

puses contain a mix of old and new pages. Though both

corpuses contain page snapshots which were archived in the

last couple of years, many of these pages were created be-

fore then. This is because IA recrawls pages over time to

track changes to page content.

https://github.com/goelayu/Jawa

https://www.nytimes.com/interactive/2021/world/india-covid-cases.html

india-covid-cases.html. Event handlers are also used to

enable users to navigate to other pages on the same site,

e.g., the menu under the “Explore” button on https://www.

coursera.org. Prior studies have shown that it is important

to preserve such informational and navigational interactions

even on archived pages [40].

We analyze the pages in Corpus3K to determine how many

contain interactions that should work on archived copies.

Specifically, we load every page after instrumenting all

scripts so that we can track all event handler registrations.

We identify all event handlers which are associated with page

elements whose attributes contain keywords such as menu,

navbar, slider, carousel, dropdown, etc.; we consider 13 such

keywords commonly associated with informational and nav-

igational interactions. We find that 91% of the pages con-

tained at least one such event handler.

Overhead of capturing JavaScript heap. Alternatively,

client-local interactions enabled by event handlers could be

preserved by storing a) every page’s final rendered HTML, b)

all resources referenced from this HTML (such as CSS and

images), and c) the JavaScript heap, which stores custom,

page-defined JavaScript state as well as native JavaScript ob-

jects [55]. However, modern browsers do not expose the en-

tire JavaScript heap [43]; only the global scope of the heap

is accessible using the “window” object. The closure scope,

which is a non-global scope that is defined by any function

and is accessible only by the nested functions that execute in

that function’s enclosed scope [51], is not accessible. This

is a key roadblock because event handlers often access clo-

sure state; 47% of the pages in Corpus3K contain at least one

such handler (we describe how we perform the state tracking

necessary to obtain this result in §4).

To access closure state, a web archive’s crawler could stat-

ically analyze and rewrite the scripts on every page prior to

executing them. However, we find that the combined over-

head of performing the static analysis necessary to identify

different scopes and running instrumented scripts inflates the

time to crawl the median page in Corpus3K by 2x; this over-

head increases to 6x at the 99th percentile. Such compu-

tational overhead will significantly increase costs for a web

archive crawling thousands of pages every second [64].

3 OVERVIEW

To overcome the adverse impacts of JavaScript on web

archival, our high-level insights stem from two key differ-

ences between the loads of live and archived pages. In this

section, we describe these differences and outline the chal-

lenges entailed in leveraging these differences.

3.1 Distinguishing properties of archived pages

No back-end origin server. Modern web pages include a

range of functionalities which require communication with

the page’s origin servers, e.g., enabling users to post com-

ments and having servers push updates to users while they

are on a page. However, when a user loads an archived page

snapshot, only that functionality on the page will work which

can be served using the resources crawled when this snapshot

was captured.

Limited sources of non-determinism. To deliver a dy-

namic user experience, many pages on the web adapt how

they are rendered based on 1 server-side state, 2 client-

side state (e.g., cookies, local storage), 3 client character-

istics (e.g., user-agent, screen dimensions), and 4 “Date”,

“Random”, and “Performance” APIs (we refer to these as

DRP APIs for the sake of brevity). For example, after a

script on a page fetches a JSON from the origin server, its

subsequent control flow might depend on the contents of that

JSON, which itself might be influenced by the contents of

a client-side cookie. In loads of archived pages, the first

two sources of non-determinism are absent: in response to

the request for a particular resource in a specific page snap-

shot, a web archive will always serve the copy it fetched

when crawling that snapshot; whereas, client browsers do

not maintain any state across loads of archived pages.

3.2 Challenges

In order to leverage the above-mentioned differences to both

improve page fidelity and reduce storage overhead in web

archives, we need to answer several questions.

What are the causes of poor page fidelity? While

some sources of non-determinism are absent in the loads of

archived pages, the remaining sources – client characteris-

tics, DRP APIs, and asynchronous execution of timer han-

dlers and script fetches – still result in non-deterministic JS

execution. Determining which of these factors is responsi-

ble for clients requesting different resource URLs than those

crawled is key to eliminating failed resource fetches and the

resultant runtime errors.

How to efficiently prune non-functional and unreachable

code? In any page that it crawls, a web archive need not

save any JS code that either relies on interactions with the

page’s origin servers or would never be executed in any load

of the page (due to the absence of certain sources of non-

determinism). One could potentially use methods like sym-

bolic or concolic execution to perform reachability analysis

and identify both unreachable code and non-functional code;

the latter comprises code that is reachable from RPCs to ori-

gin servers. However, as reported in prior work [42, 49, 48],

these methods for analyzing JS code are computationally ex-

pensive, requiring tens of minutes per page. Increasing the

compute overheads of crawling to such a large extent would

nullify any storage savings.

How to ensure code pruning does not hamper fidelity?

While eliminating non-functional code reduces storage cost,

doing so comes at the risk of inadvertently hurting fidelity.

In particular, the code that is retained must function as it

would if no code were discarded. Checking that any method

identified for code elimination does preserve this property is

https://www.nytimes.com/interactive/2021/world/india-covid-cases.html
https://www.coursera.org
https://www.coursera.org

Goal Observations Section

Improve fidelity APIs for client characteristics are the key cause for failed resource fetches §4.1

Differences in URLs due to DRP APIs can be resolved using server-side URL matching algorithms

Prune non-

functional code

Most of JS code which will not function on archived pages is in third-party source files, which can

be identified based on their URLs

§4.2

First-party scripts typically use third-party code cautiously, so that reliability of former is not depen-

dent on availability of latter

Prune unreachable DRP APIs typically have no impact on control flow §4.3

code For event handlers associated with post-load interactions which work on archived pages, page state

accessed is disjoint across handlers and user input does not influence control flow

Table 1: Overview of the main insights that influence our design of Jawa.

non-trivial because browsers do not offer any APIs to extract

runtime information that can be used to identify state depen-

dencies between different scripts on any page.

3.3 Requirements

Based on all the considerations discussed thus far, we focus

on three objectives.

• High fidelity. First, we seek to ensure that any archived

page faithfully mimics the original page in two respects:

1) how the page is rendered, and 2) all functionality on

the page which does not require communicating with the

page’s back-end servers works.

• Low cost. Second, we aim to enable a web archive to

improve its coverage by reducing the amount of storage

needed for any collection of page snapshots. In doing

so, we seek computationally lightweight methods so as to

minimize the cost overheads associated with maintaining

the same rate of crawling pages as today.

• Simplicity. Lastly, our solutions must be simple to imple-

ment. In our discussions with the Internet Archive, they

have emphasized that simplicity is key for any proposed

changes to be viable in practice.

4 DESIGN

We describe our design of Jawa in three parts. We begin

by describing how Jawa improves page fidelity by eliminat-

ing the sources of non-determinism which result in failed

resource fetches while loading archived pages. Thereafter,

we present the methods used by Jawa to identify what sub-

set of crawled JS files need not be saved: first to eliminate

non-functional code, and second to prune unreachable code

while preserving post-load interactions. To enable Jawa’s

use at scale, the overriding principle that guides all aspects of

our design is to minimize computational overheads by lever-

aging properties of JS typically found on the web; Table 1

provides an overview of our observations. Later (§7), we de-

scribe how a web archive which uses Jawa could potentially

handle pages which do not satisfy these properties.

Analysis framework. Throughout this section, we use our

custom JavaScript analysis framework (4.5K LOC) to study

the properties of JavaScript found on pages in Corpus3K. As

in prior program analysis tools for JavaScript [49, 55, 38],

our analysis framework first performs offline, static analysis

of the JS in a page, converting each JS file into an abstract

syntax tree (AST) representation. It then parses this AST to

identify the different JS scope levels – local, block, closure,

and global – and leverages this information to associate each

JS variable to its corresponding scope. The framework also

uses the AST to detect JS function invocations.

Building on these insights, our framework instruments

pages with code that is triggered in each function invocation,

and records the arguments to the function, all the closure and

global scope variables read and written inside the function

body, and the return value. Special care is taken to (1) record

all accesses to the DOM, (2) track accesses of any global

variable’s properties via an alias, e.g., “var a = window”

followed by a read of “a.innerHeight”, (3) identify DOM

elements with registered event handlers and the correspond-

ing handler functions, and (4) monitor and control the return

values of browser APIs such as “navigator.userAgent”.

4.1 Improve fidelity by eliminating failed fetches

To ensure that users do not encounter failed resource fetches

when they load archived pages, a web archive could rewrite

every stored page to ensure that, when the page is loaded,

the flow of execution and the return values of all browser

APIs match those seen when the page was crawled.2 If a

web archive were to eliminate sources of non-determinism in

this manner, we observe that fixing the schedule of execution

cannot result in any loss of functionality; after all, developers

of pages have no control over the client-side schedule of exe-

cution of asynchronous scripts. However, a page’s developer

can indeed ensure that code on the page behaves differently

based on the results from browser APIs. Therefore, we seek

to understand the impact of these APIs on resource URLs

and eliminate only those sources of non-determinism which

result in failed fetches during loads of archived pages.

Impact of different sources of non-determinism. We

measure the impact of each source of non-determinism as

follows. We first load our locally stored copies of all pages in

Corpus3K with a desktop client. We then reload these pages

mimicking a different client (“iPhone 6”). Mimicking a dif-

ferent client allows us to exercise different values of most

2Alternatively, a web archive could crawl every page under all possible com-

binations of non-determinism. Doing so is not only impractical, but would

dramatically inflate compute and storage overheads.

(a) (b)

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
0.00

0.25

0.50

0.75

1.00

Fraction of URLs unmatched

C
D

F
 a

c
ro

s
s
 p

a
g

e
s

Fuzzy
Querystrip
Exact

Figure 4: For every page in Corpus3K, fraction of resource re-

quests which cannot be matched with any crawled resource.

The impact of different URL matching algorithms is shown

when the sources of non-determinism are (a) APIs for client

characteristics as well as DRP APIs, and (b) only DRP APIs.

client characteristics, such as user-agent, screen dimensions,

and OS. We reload all pages once more, this time matching

the client characteristics used in the original load.

On 72% of pages, at least one different resource URL was

requested in the second load compared to the first load; these

two loads differ in the values for both APIs for client charac-

teristics and DRP APIs. Whereas, when comparing the third

load to the first, which differ only with respect to DRP API

values, the corresponding fraction was 52%. Note that, in

both cases, even one failed resource fetch can have a cascad-

ing effect, resulting in many other resources going unfetched.

Variance in resource URLs due to non-determinism results

in failed network fetches only if a web archive (like IA) ex-

pects requests from clients to specify URLs which are iden-

tical to the ones crawled. However, across loads of a page, if

the same resources are being requested using different URLs,

it might suffice for the web archive to employ a better algo-

rithm to match URLs requested to those crawled.

To check if this is the case, we consider two URL match-

ing algorithms used in prior work: 1 querystrip, where the

query string in any URL (i.e., the portion of the URL beyond

the delimiter ‘?’) is stripped before initiating a match [57],

and 2 fuzzy matching, which leverages Levenshtein dis-

tance [45] to find the best match for any given URL [26].

Querystrip relies on the fact that query strings are typically

used for updating server-side state, and they do not influence

the content of the response. Fuzzy matching accounts for

cases where non-determinism across loads results in simple

string transformations of the URLs for the same resources.

In any page load, we match URLs in the order they are

requested, and we match any requested URL against those

crawled URLs that have not already been matched.

Figure 4(a) shows that, on many pages, a significant frac-

tion of URLs were unmatched with both algorithms, when

APIs for client characteristics were a source for diverging

URLs. This is because, when client characteristics dif-

fer, often the number of resources fetched on the same

page changes. For example, www.nytimes.com fetches the

JavaScript file player-embedded.js on mobile clients to en-

able video players, whereas it fetches no such scripts on

desktop clients.

Digging deeper into DRP APIs. In contrast, when DRP

APIs are the only source of non-determinism, Figure 4(b)

shows that either URL matching algorithm suffices to elimi-

nate almost all failed resource fetches. However, this might

be the case only because we compare two loads of every

page, and the return values of DRP API invocations did not

sufficiently differ to have an impact.

To capture the effects of all possible return values of DRP

APIs, we turn to concolic execution [37, 61, 42], a variant

of symbolic execution which executes programs concretely

(rather than symbolically) while ensuring complete cover-

age of all control flows. We modify a prior concolic execu-

tion tool [42] to only track control flows influenced by DRP

APIs. We then randomly sample 300 pages from Corpus3K

because it takes around 20 minutes per page with this tool.

On all pages, DRP APIs had no impact on control flow. Thus,

comparing any two loads of a page suffices to examine the

divergence in URLs across loads due to these APIs.

Takeaways. These results influence our design of Jawa in

two ways. First, we instrument all scripts on any page so

that, when clients execute these scripts, all APIs for client

characteristics return the same values as when the page was

crawled. Compared to a thin-client model where a web

archive serves requests for pages by executing page loads

on behalf of users [26], our approach of letting users execute

page loads on their devices reduces server-side overheads.

Second, we do not need to account for any differences across

loads in DRP APIs because the impact of these differences

can be accounted for with server-side matching of requested

URLs to crawled URLs.

Note that we choose to patch all invocations of client char-

acteristic APIs, and not just the ones which influence the

URLs fetched. This is because, even if a particular invo-

cation of an API does not impact which URLs are fetched,

it can impact the reachability of code which assumes that

state dependent on the client’s type has been setup earlier

in the page load. Hence, if different API invocations return

inconsistent values, this could exercise code which accesses

uninitialized state, resulting in runtime errors.

4.2 Pruning non-functional code

We now turn our attention to reducing the storage overhead

of JavaScript on web archives. Jawa’s crawler uses two com-

plementary approaches to take advantage of the two previ-

ously mentioned properties which distinguish archived page

snapshots from pages on the web. The key consideration in

both cases is to ensure that pruning any JavaScript code does

not affect the execution of the remaining code.

Characteristics of non-functional code. Our first ap-

proach for pruning JavaScript code is based on two observa-

tions about the code which will not work on archived copies

of pages, i.e., code which relies on clients interacting with

www.nytimes.com

origin servers. First, on a typical page, we find that most of

such code is compartmentalized into a few files, rather than

being evenly spread across all JavaScript source files on the

page. As we will show later, these files do not contain any

code that is worth preserving. Second, functionality which

will not work on archived pages is largely implemented by

third-party scripts. Even though some of the functional-

ity which relies on communication with origin servers (e.g.,

intra-site search, login) is implemented by the first-party ori-

gin, we only focus on discarding third-party files, for reasons

discussed shortly.

The implication of these observations is that, to iden-

tify most of the non-functional JavaScript code in archived

pages, it is unnecessary to perform any complex code anal-

ysis. Instead, it suffices to assemble and use a “filter list”

which captures the features distinctive to the URLs of scripts

containing non-functional code; when crawling pages, a web

archive would simply have to discard (and not even fetch)

any script whose URL matches the filter list.

For example, via manual analysis of the URLs of all

scripts seen in Corpus1M, we assemble a filter list comprising

45 rules. We consider those script URLs which are included

on many pages. For each such popular script, we first visit

the domain on which the script is hosted to understand the

services offered by that domain. In cases where a domain

hosts scripts of many kinds, some of which are important to

retain even on archived pages, we examine the script’s con-

tent to determine its utility.

Every rule in our list matches URLs at one of three granu-

larities: 1) domain, i.e., filter any file hosted on that domain

(e.g., “zephr.com” enables support for user subscriptions), 2)

file name, i.e., filter scripts if the file name matches, regard-

less of the domain hosting the script (e.g., “jquery.cookie.js”

is used for cookie management), and 3) URL token, i.e., fil-

ter scripts if a specific keyword appears anywhere in their

URL (e.g., “pagesocial-sdk” and “recaptcha”).

Recall that Corpus1M comprises page snapshots crawled

from the Internet Archive, which already discards resources

that users often block on the live web, e.g., ads. In contrast,

our filter list aims to prune scripts which implement func-

tionality that is important to preserve on the live web, but will

not work on archived copies. Moreover, since a few popular

third-party service providers are used by the vast majority of

websites [46], we find that we only need to add 6 rules to our

filter list to account for pages on 300 additional sites beyond

the 300 sites included in Corpus1M.

Filtering has no impact on fidelity. Discarding a subset

of the JS files on a page might, however, break the execution

of code in files that are retained. Therefore, we study the

impact of filtering along two dimensions: 1) visual (i.e, does

the page look the same?), and 2) functional (i.e, are post-load

interactions that will work on archived pages unaffected?)

We load every page in Corpus3K with and without filter-

ing enabled. We take a screenshot after every page load.

<script src="https://js.sentry-cdn.com/7bc8b.min.js" </script>
<script>

if (window.Sentry) {

window.Sentry.onLoad(function() {
window.Sentry.init({

maxBreadcrumbs: 30,
environment: 'prd', });

});

}
</script>

Figure 5: Code snippet from www.nytimes.com where the

main frame first fetches a third-party JavaScript file hosted on

www.js.sentry-cdn.com and then cautiously invokes a func-

tion from it inside an if condition.

Leveraging our JavaScript instrumentation described earlier,

we also 1) identify all event handlers registered during each

page load, 2) trigger all event handlers after the page load

completes, and 3) track all values read or written from the

JavaScript heap and DOM by these handlers.

First, when we compare the screenshots for every page

with and without filtering, we observe that these screenshots

differ in the value of at least one pixel for 109 of the 3000

pages in Corpus3K. Upon manual examination of these 109

pages, we find that all differences are either due to anima-

tions or because DRP APIs result in a different timestamp

on the page. Second, for all event handlers registered by

the unfiltered files, we find 35 pages on which at least one

value accessed by at least one of these event handlers dif-

fered across loads with and without filtering. Again, these

differences were not consequential: they were due to differ-

ences in timing information, e.g., some event handlers log

the times at which their execution starts and ends.

A key reason for these positive results, which show that

Jawa’s filtering has no impact on the fidelity of the code

retained, is our explicit choice to only consider third-party

source files for filtering. On the one hand, most third party

scripts are self-encapsulated, i.e., the code in these files only

interacts with itself or the files it subsequently fetches. On

the other hand, as shown in Figure 5, first-party scripts typi-

cally invoke third-party code cautiously, so that the former is

unaffected in the off chance that the latter fails to be fetched.

Note that one cannot simply eliminate all third-party

scripts; that would render dysfunctional many post-load in-

teractions which do work, and are important to preserve, on

archived pages. As we show later in our evaluation (§6),

while discarding files which match our carefully curated fil-

ter list enables significant storage savings, doing so preserves

all navigational and informational interactions.

4.3 Prune unreachable code

In the Javascript files which do not match Jawa’s filter list,

many lines of code will never be executed in any page load.

This is because 1) some sources of non-determinism are ab-

sent in loads of archived pages (§3.1), and 2) Jawa elim-

www.nytimes.com
www.js.sentry-cdn.com

4.4 Summary

Put together, our observations on the differences between

loads of archived and live pages enable Jawa to use a fairly

simple methodology to crawl and save pages, as shown in

Figure 6. For every page that it crawls, Jawa fetches all those

resources which do not match its filter list. For the remaining

files, it 1 injects code to identify what code was executed

during the page load and in what order, and 2 triggers ev-

ery registered event handler using default input values (e.g.,

the default x and y coordinates for a mouse click event is

0,0) and identifies the code executed. Finally, it stores those

portions of the page that are exercised in either step above.

It instruments the retained code so that, when users load the

page, their browser follows the same execution schedule and

uses the same client characteristics.

5 IMPLEMENTATION

Implementing a web archive involves several considerations

which are outside the scope of this paper, e.g., distributing

data across servers, detecting and coping with hardware fail-

ures, etc. Our implementation focuses on the aspects of a

web archive addressed by Jawa (Figure 6), namely crawling

and storing page snapshots. We also describe the impact of

Jawa’s design on serving page snapshots to users.

5.1 Crawling pages

When crawling a page, Jawa’s crawler (1.2K LOC) uses

a Node.js based man-in-the-middle proxy to interpose on

all requests/responses. The proxy uses the Esprima [9]

and BeautifulSoup [4] libraries to instrument JavaScript and

HTML files as they are fetched. Jawa references the filter

list for every outgoing request and, using regular expression

matching, blocks the request for any resource whose URL

matches any of the rules in the filter list. For all the remain-

ing resources fetched, Jawa selectively instruments JS files

prior to their execution. This instrumented code, upon exe-

cution, enables Jawa to 1) interpose on all browser APIs, 2)

track the subset of JS code executed (in terms of JS func-

tions), and 3) helps enumerate all event handlers registered

on the page. The instrumentation overhead incurred by the

crawler is significantly lower compared to when tracking all

state accesses (§4).

5.2 Storing page snapshots

For every page that it crawls, Jawa saves only a subset of the

JavaScript code on that page. Consequently, when the same

JavaScript file (e.g., a library) is included on many pages, it

is often the case that different subsets of this file need to be

stored as part of different page snapshots, thereby preempt-

ing simple file-level deduplication, as used by the Internet

Archive today [23].

Our solution is to store every unique file as a set of parti-

tions; each partition represents a different disjoint subset of

the file: from a specific start byte offset to an end byte offset.

When Jawa crawls a new page snapshot, for every JavaScript

Crawl index

Key Value

IA URL List of (content hash, WARC file

ID) tuples

Jawa (URL, content

hash)

List of (start byte offset, end byte

offset, WARC file ID) tuples

Serving index

Key Value

IA (URL, timestamp) (WARC file ID, byte offset)

Jawa (URL, timestamp) List of (WARC file ID, byte off-

set) tuples

Table 2: Comparison of indices maintained by IA and Jawa.

file crawled that is not filtered, it identifies the subset of code

in this file relevant for this snapshot. It then looks up the

crawl index (Table 2) to determine if this subset is already

covered by the byte ranges in this file that have previously

been stored. The crawler creates new WARC records for

portions of the file that have not been previously stored and

appends new entries to the crawl index. The crawl index is

processed asynchronously to produce the serving index (like

is the case today with Internet Archive).

5.3 Serving page snapshots

The implication of storing any JavaScript file’s contents as

above is that, when a client requests for a file while loading

a page snapshot, one does not know which of the partitions

stored for this file are relevant for this particular snapshot.

Instead, a web archive which uses Jawa can return the union

of all stored partitions for the requested JavaScript file; after

all, the portion of the file needed for any snapshot is a subset

of the stored partitions. Since the size of this union is at most

equal to the size of the original file, clients will have to fetch

no more bytes than they do today.

6 EVALUATION

We evaluate Jawa with three metrics: storage (to store

crawled resources and to store indices), fidelity (similarity of

archived page snapshots to the corresponding original pages)

and performance (both for crawling and serving). In all

cases, we compare against the corresponding techniques cur-

rently in use by the Internet Archive (§2), which we refer to

as IA*.3 In some cases, we also break down the utility/over-

head of each of Jawa’s components. The key findings from

our evaluation are as follows:

• Jawa reduces the storage needed for our corpus of 1 mil-

lion page snapshots by 41%. This reduction stems from

Jawa discarding 84% of JavaScript bytes.

• Despite this significant reduction in storage, on a random

sample of pages, all event handlers that one would expect

to function on archived pages continue to work.

• When we mimic loads of archived pages from IA, at least a

quarter of resource fetches fail on more than 10% of pages.

3IA* refers to us mimicking the techniques used by IA.

0

100

200

300

IA* IA*+
Custom Filter

IA*+Combined
Filter

Jawa

T
o

ta
l
S

to
ra

g
e

 (
G

B
)

0

100

200

300

400

500

600

IA* IA*+
Custom Filter

IA*+Combined
Filter

Jawa

T
o

ta
l
S

to
ra

g
e

 (
G

B
)

(a) JavaScript resources (b) All resources

Figure 7: Total storage necessary to store corpus of 1 million page snapshots.

Whereas, on over 99% of pages, Jawa eliminates all failed

network fetches and ensures that the set of resources re-

quested from the archive match those crawled.

• Crawling throughput with Jawa improves by 39%, thanks

to our use of lightweight techniques for code analysis and

filtering of JavaScript files.

6.1 Storage

6.1.1 Storage for resources.

To begin, we consider the total amount of storage needed

to store the resources in our Corpus1m corpus. We crawl

all of these page snapshots from IA using our crawler

(§5). On each page, Jawa’s crawler only fetches third-party

JavaScripts which do not match its filter list. Apart from

our manually curated filter list for pruning code which will

not function on archived pages, we also leverage the open-

source filter list from EasyList [8], which is widely used by

many browser extensions to identify ads and analytics. In

every script that it does fetch when crawling a page snap-

shot, Jawa’s crawler identifies the subset of code necessary

for this snapshot and stores the portion of this subset that is

not covered by the subsets of this file previously stored.

Figure 7(a) shows that Jawa stores 40 GB of JavaScript

across the 1 million pages, a reduction of 84% compared to

IA*. Of course, to store the entire corpus, all resources on ev-

ery page snapshot need to be saved, not only JavaScripts. For

resources other than scripts (images, CSS, HTML, fonts),

Jawa offers no storage benefits; it stores them exactly as IA*.

Yet, we see a 41% reduction in total storage: 535GB with

IA* to 314GB with Jawa (Figure 7(b)). This is because, as

seen earlier in §2.2, JavaScript files account for 49% of all

the bytes across all pages, even after file-level deduplication.

Since 63% of the more than 140 PB of data stored by IA

is devoted to web page snapshots [12, 13], we estimate that

Jawa can reduce IA’s storage needs by 35 PB.

Sources of storage benefits. Storage savings enabled by

Jawa stem from a combination of not storing filtered files

and pruning unreachable code. When we break down the

impact of the filter lists we use, Figure 7(a) shows that our

custom filter list alone reduces the total amount of JavaScript

saved by 36%, and EasyList’s rules result in a further reduc-

tion of 28%. Jawa also significantly reduces storage needs

by eliminating unused code: the difference between the two

right most bars in Figure 7.

6.1.2 Storage for indices

In addition to storing crawled resources, both IA* and Jawa

also need to store the crawling and serving indices (Table 2).

The former enables the crawler to not store duplicate con-

tent, whereas the latter enables lookups of requested re-

sources when serving page snapshots. For our corpus of 1

million page snapshots, we find that size of both indices is

marginally smaller (15%) with Jawa than with IA*. First,

for most script files, Jawa ends up having to store a single

WARC record; for such files, after the first time a subset of

the file’s code is stored, all subsequent page snapshots which

include the same file end up needing the same subset. Sec-

ond, the increase in index entries for other files (for which

multiple subsets end up being stored) is offset by the elimi-

nation from the index of filtered files.

6.2 Fidelity

To evaluate Jawa’s preservation of page fidelity, we crawl

all 3000 pages in Corpus3K from the live web. We perform

these crawls on a desktop, once with Jawa’s crawler, and

once without using any of its methods. We then load these

pages from the two local copies, mimicking a different client

(“iPhone 6”). When using page snapshots saved by Jawa,

we match requested URLs to crawled URLs after stripping

query strings.

Resource fetches. We first evaluate Jawa’s impact on fi-

delity by examining the discrepancy between the set of re-

sources stored for any snapshot and the set of resources

fetched by a client when it loads that snapshot. Figure 8(a)

shows that, while 7% of network requests return a 404 on the

median page in loads of IA*, this fraction drops to 0% with

Jawa. On the 95th percentile page, the corresponding frac-

tions are 36% with IA* and 0% with Jawa. Consequently,

Figure 8(b) shows that, while 10% of stored resources are

not fetched on the median page when mimicking loads from

IA, this fraction drops to 0% with Jawa. On the 95th per-

centile page, the corresponding fractions are 75% with IA*

and 0% with Jawa.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 Fraction of requests that failed

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

Jawa
IA*

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
 Fraction of bytes not fetched

C
D

F
 a

c
ro

s
s
 p

a
g
e
s

Jawa
IA*

(b)
Figure 8: When snapshots of 3K pages are served, (a) number

of resources requested by client which are not stored, and (b)

fraction of resources stored for a snapshot which are not fetched

by the client.

Visual analysis. To check if the pages served by Jawa are

identical to the ones it crawled, we take a screenshot of ev-

ery page both when crawling it and when we reload it from

our local copy. We then compare every pair of screenshots

to check if the value of every pixel matches. Apart from

the visual differences accounted for by animations and non-

determinism in 54 pages, both screenshots matched exactly

for every other page when using Jawa. Since loads of IA*

do not patch APIs for client characteristics, differences in

screen dimensions between clients make it moot to compare

screenshots.

Interactions. Finally, to evaluate Jawa’s impact on post-

load interactions, we randomly sample 150 pages. For each

page, we load the versions that would be served by IA* and

by Jawa. To isolate the impact of Jawa’s techniques, we also

consider an intermediate design point (Only filter) where we

only use Jawa’s filtering but do not prune unreachable code.

We categorize all event handlers on every page into three

types: 1) navigational, i.e., they help in navigating either

to a different page (e.g., a navigational bar) or within the

page (e.g., a scroll-to-bottom button), 2) informational, i.e.,

they help make more information available (e.g., carousels

or tabs), and 3) transactional (e.g., login or post buttons). On

archived pages, transactional event handlers will not func-

tion. So, on each of the 150 sampled pages, we manually

trigger all event handlers that belong to the first two cate-

gories. All 124 navigational interactions and 100 informa-

0.0

0.5

1.0

1.5

ArchiveBox Jawa
baseline

Jawa

C
ra

w
lin

g
 t

h
ro

u
g

h
p

u
t

(N
o

rm
a

liz
e

d
)

Figure 9: Comparison of crawling throughput, normalized to

that offered by ArchiveBox.

tional interactions worked as expected in all three loads: IA*,

Only filter, and Jawa. Key to preserving these post-load in-

teractions are Jawa’s carefully curated filter list for discard-

ing non-functional code, and its methods for identifying and

retaining all reachable code. In contrast, if we discard all

third-party files or if we use Jawa’s filter list but save only

the functions registered as handlers, then only 42% of these

interactions work in the former case and 10% in the latter.

6.3 Performance

Crawling throughput. IA’s production crawler is not pub-

lic to the best of our knowledge. Therefore, we turn to

two open-source crawlers: Brozzler [5] and ArchiveBox [3].

Brozzler is operated by IA, and used alongside their pro-

duction crawler. Whereas, ArchiveBox is a very active and

commonly used crawler by individual archivists (over 12K

stars on GitHub). We find that Brozzler is 20% slower than

ArchiveBox because of the latter’s more efficient implemen-

tation of their headless Chrome interface. We also note, that

on a server with 32 cores and 128 GB RAM, we were able to

crawl 5000 URLs in 15 minutes with ArchiveBox. With this

crawling throughput, IA would need to dedicate 900 such

servers for crawling pages, which is comparable to the num-

ber of servers they currently claim to use [11]. Therefore, we

evaluate Jawa against ArchiveBox.

Figure 9 shows that Jawa’s crawler offers throughput com-

parable to Archivebox when all of Jawa’s techniques are dis-

abled (Jawa baseline). Enabling all the methods in Jawa’s

design increases our crawler’s throughput by 39%.

To breakdown the overheads, we measure the latency of

each of the techniques used by Jawa’s crawler in isolation,

namely 1) filter: filtering JavaScript files, 2) code injec-

tion (CI): instrumenting the code in fetched scripts, 3) dy-

namic tracking (DT): dynamically tracking code execution

and event handler registration, and finally 4) event trigger-

ing (ET): invoking event handlers and capturing the code

executed. Figure 10 shows that not having to fetch filtered

scripts completely offsets the overheads of all other tech-

niques. Not only does Jawa’s crawler not fetch any scripts

which match its filter list, but all the resources that would

have been fetched by the filtered files also go unfetched; this

latter set of files often do not match the filter list.

0

100

200

300

400

500

600

Filter CI DT ET

L
a

te
n

c
y
(m

s
)

−5000

−2500

0

1000

2000

Filter CI DT ET

Figure 10: Benchmarking the overhead of techniques used in

Jawa’s crawler. Bars plot median across pages, and whiskers

plot 10th and 90
th percentiles. Graph on the left zooms in on

the yrange 0 to 500ms in the graph on the right.

Index I/Os per page Reduction in I/Os

with IA* per page with Jawa

50
th %ile 90

th %ile 50
th %ile 90

th %ile

Crawling 3 15 1 5

Serving 41 107 1 3

Table 3: Writes on crawling index and reads on serving index;

values shown for 50th and 90th percentile page on median site.

Jawa also impacts crawling throughput by requiring more

writes to the crawling index because, unlike IA*, it spreads

the code in some script files across multiple WARC records.

We cannot quantify the performance impact of doing so since

our setup does not match a production archive like IA. How-

ever, we can quantify the number of additional writes that

Jawa performs to the crawl index, compared to IA*. Table 3

shows that the number of writes to the crawl index decrease

with Jawa; due to filtering, fewer files are crawled.

Serving performance. When serving page snapshots,

Jawa’s only overhead is in needing to potentially lookup mul-

tiple WARC records in order to respond to a request for a

JavaScript file. We find that page load times on IA’s Way-

back Machine are proportional to the number of resources

on the requested page snapshot, or equivalently, the num-

ber of WARC records that IA needs to lookup to serve the

snapshot. Therefore, as a proxy for estimating Jawa’s impact

on user-perceived performance, we examine the increase due

to Jawa in the number of WARC records read when serv-

ing page snapshots. Table 3 shows that the number of in-

dex lookups decrease with Jawa; again, thanks to filtering, a

client has to fetch fewer files per snapshot.

7 VERIFYING PAGE PROPERTIES

Jawa’s methods for pruning non-functional and unreachable

code are based on three properties that we found to be true

on archived web pages:

• DRP APIs have no impact on control flow

• Discarding third-party JavaScript files which match a

manually curated filter list has no impact on fidelity

• For post-load interactions which work on archived pages,

the event handlers which power them do not have read-

write dependencies that influence branch conditions

All of these observations are rooted in our empirical analysis

of a variety of web pages in Corpus3K: 9 internal pages and

1 landing page in each of 300 sites, which span a wide range

of rankings among Alexa’s top million sites. However, we

recognize that not all pages may abide by these properties.

For example, consider a page which shows the time until a

deadline and switches the font color when the time remain-

ing is below a threshold; such a page would violate the first

property listed above.

To handle such cases, we observe that web archives do not

crawl every page just once; they repeatedly recrawl pages

over time in order to capture changes to every page’s con-

tent. For any given page, in some crawls of the page, a

web archive can disable all of Jawa’s methods and check if

the properties expected to be true indeed hold on this page.

For example, like the analysis we performed (§4), the web

archive can instrument scripts to track state accesses, and

then examine dependencies between event handlers and be-

tween files which do or do not match the filter list. It can also

perform concolic execution to verify that DRP APIs have no

impact on control flow.

The key to restricting the compute overheads of these

heavyweight analyses is to run them on a sample of snap-

shots. To determine the sampling rate, a web archive can

leverage properties that are stable across a page’s snapshots.

For example, upon analyzing all of IA’s snapshots for 300

randomly chosen pages, we observe that the median page

has the same number of runtime errors for an average of 53

snapshots. Therefore, once in every 53 crawls of any of these

pages, a web archive can disable filtering and check if the

number of runtime errors matches prior crawls where filter-

ing had been used. If there is a mismatch, the web archive

can disable the use of filtering for this page going forward.

Since Jawa serves any JavaScript file to users as the union of

all partitions of this file stored across crawls (§5), disabling

filtering in one crawl of the page will also benefit all prior

crawls of that page.

8 DISCUSSION

How future proof is Jawa? In the immediate future, re-

cent trends [18] indicate that the amount of JS on pages will

continue to increase, making it important for web archives to

adopt Jawa’s techniques for pruning JS and for eliminating

fidelity issues due to the non-determinism introduced by JS.

In the long term, we expect that the principles that dictate

Jawa’s design will continue to hold: to serve pages with high

fidelity, 1) archives must account for non-determinism, and

2) a large fraction of JS can be discarded with no risk.

Optimize already archived pages. Jawa’s simple tech-

niques make it highly amenable to be used with pages that

have already been archived. First, a web archive can sig-

nificantly reduce its storage needs by discarding all JS files

that match Jawa’s filter list. Second, the web archive can

rewrite the HTML of every archived page to include a cus-

tom script which will enforce the same client characteristics

as the crawler when users load the page. The only aspect of

Jawa that would be hard to use on already archived pages is

the elimination of unreachable code, as that requires invok-

ing all event handlers on every page.

9 RELATED WORK

Impact of JavaScript on web crawlers. Prior work

has shown that it is important for web crawlers to execute

JavaScript when crawling pages, both in the context of web

archives [31, 32, 33] and web search engines [1], else many

important resources on a page will often go uncrawled. Our

work highlights that, due to the non-deterministic execution

of JavaScripts, archived pages often have poor fidelity even

when pages are crawled using a browser which executes all

scripts on every page.

Beyond executing JavaScripts while crawling a page, sys-

tems like Conifer [6] also save all resources on the page that

are fetched while the user is interacting with the page. How-

ever, such systems are designed for private web archival, i.e.,

a user saves a page and its constituent resources for the user’s

own personal use later. If users load a page archived by a

different user using a different device/browser, they will face

the same fidelity issues seen on the Internet Archive.

Coverage of web archives. Many measurement stud-

ies [27, 28] have demonstrated that web archives are far

from comprehensive in archiving all pages on the web. Prior

work [50, 41] has attempted to address the incompleteness

caused due to large portions of the web not being openly

available (e.g., behind paywalls) and requiring user logins

(e.g., social media). In contrast, we seek to enable web

archives to improve their coverage by reducing the costs as-

sociated with archiving any corpus of pages; thereby, for the

same budget, a web archive can crawl and save more pages.

Supporting bulk processing of archives. Jawa focuses on

enabling web archives to support the use case where users

load individual page snapshots and interact with them. Al-

ternatively, web archives are used by researchers to perform

large scale analyses of historical information. Xinyue et

al. [64] demonstrate the performance penalties of the WARC

format for such batch processing workloads, and many sys-

tems [47, 2, 39] have been developed to enable programmatic

analysis of large corpuses without needing to access each in-

dividual resource on every page.

JavaScript record and replay systems. A number of

prior systems [29, 52, 60] enable users to record and replay

JavaScript execution, both in the context of browsers [29]

and independent JavaScript programs [60]. These record and

replay tools are critical for debugging JavaScript based er-

rors. Therefore, to ensure high fidelity replay, all of these

systems identify and patch all sources of non-determinism

to match the recorded version. In contrast, we analyze the

individual impact of each source of non-determinism on the

URLs fetched and patch them accordingly.

Code reachable through event handlers. JavaScript test-

ing tools automate the process of testing by dynamically

constructing test cases to achieve maximum code coverage.

A key part of this process is identifying all code that can

be potentially executed by event handlers. Doing so re-

quires heavyweight symbolic execution analysis [42], or ex-

haustively going through all possible orders and inputs [30].

Jawa leverages the differences between archived and live

web pages to simplify this analysis by only needing to use

the trace from a single execution.

Program analysis on the web. JavaScript on the web

has been notorious for various kinds of security, privacy and

performance issues. A large body of prior work focuses on

addressing such issues by relying on sophisticated program

analysis techniques [63, 66]. Such techniques, however, in-

cur a high computation cost. This is why, in solutions for

optimizing web performance [42, 54, 49] which use com-

putationally expensive JavaScript analysis techniques, web

servers perform such analysis in the background to mitigate

the impact of their overheads. For archival systems, even if

crawled JavaScript resources are processed offline, the cost

for computationally heavyweight processing is not sustain-

able. Hence, Jawa employs lightweight approaches, rooted

in properties of JavaScript on the web.

Dead code elimination on the web. One way to optimize

web performance is to eliminate dead code (i.e., code that

is never reachable) from resources such as JavaScript and

CSS. Tools [17, 25] which do so using static analysis are

widely used. We observe that, in archived pages, a signif-

icantly greater fraction of code is potentially unreachable,

since many sources of non-determinism (e.g., variation in

client state and server responses) are absent. Jawa exploits

this property to provide significant storage savings.

10 CONCLUSION

Since when the Internet Archive began operating in the late

1990s, a marked change on the web has been the increased

use of JavaScript. In this paper, we shined light on two

significant problems caused by this change: broken render-

ing of archived pages, and petabytes of storage wasted on

JavaScript which will either be non-functional or never be

used. Our design of Jawa addresses these problems while

emphasizing low overhead on both crawling and serving

pages. As a result of our work, web archives will be able to

archive many more pages than they can today for the same

cost and ensure that archived pages more closely approxi-

mate their original versions.

Acknowledgements: We thank the anonymous reviewers

and our shepherd, Philip Levis, for their valuable feedback.

REFERENCES

[1] https://developers.google.com/search/docs/

advanced/javascript/javascript-seo-basics.

[2] Archive unleashed. https://github.com/

archivesunleashed/aut.

[3] Archivebox. https://github.com/ArchiveBox/

ArchiveBox.

[4] BeautifulSoup. https://pypi.org/project/

beautifulsoup4/.

[5] Brozzler. https://github.com/internetarchive/

brozzler.

[6] Conifer. https://conifer.rhizome.org/.

[7] Donate to the Internet Archive! https://archive.org/

donate/.

[8] EasyList. https://easylist.to/.

[9] Esprima. https://esprima.org/.

[10] HTTP Archive: State of the web. https://httparchive.

org/reports/state-of-the-web#bytesTotal.

[11] IA infrastructure. https://archive.org/details/jonah-

edwards-presentation.

[12] Inside wayback machine. https://thehustle.co/inside-

wayback-machine-internet-archive/.

[13] Internet archive. https://www.archive.org/about/.

[14] Internet Archive tax return. https://projects.

propublica.org/nonprofits/organizations/

943242767.

[15] jQuery element selector. https://api.jquery.com/

element-selector/.

[16] Page-vault. https://www.page-vault.com/solutions/.

[17] Prepack. https:/www.prepack.io.

[18] State of JavaScript. https://httparchive.org/reports/

state-of-javascript.

[19] Stillio. https://www.stillio.com/.

[20] The Boston Globe: Internet archive’s copy from

August 2, 2020. https://web.archive.org/web/

20200802084355/https://www.bostonglobe.com/.

[21] The Daily Caller: Internet archive’s copy from

September 5, 2020. https://web.archive.org/web/

20200905133311/https://dailycaller.com/.

[22] The WARC format 1.0. https://iipc.github.io/warc-

specifications/specifications/warc-format/warc-

1.0/.

[23] WARC revisit tag. https://iipc.github.io/warc-

specifications/specifications/warc-format/warc-

1.0/#revisit.

[24] Wayback machine. https://www.archive.org/web.

[25] Webpack. https://webpack.js.org/guides/tree-

shaking/.

[26] Webrecorder. https://webrecorder.net/.

[27] S. G. Ainsworth, A. Alsum, H. SalahEldeen, M. C.

Weigle, and M. L. Nelson. How much of the web is

archived? In Joint Conference on Digital Libraries,

2011.

[28] A. AlSum, M. C. Weigle, M. L. Nelson, and H. Van de

Sompel. Profiling web archive coverage for top-level

domain and content language. International Journal

on Digital Libraries, 2014.

[29] S. Andrica and G. Candea. WaRR: A tool for high-

fidelity web application record and replay. In DSN,

2011.

[30] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip.

A framework for automated testing of javascript web

applications. In ICSE, 2011.

[31] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle,

and M. L. Nelson. Not all mementos are created equal:

Measuring the impact of missing resources. Interna-

tional Journal on Digital Libraries, 2015.

[32] J. F. Brunelle, M. Kelly, M. C. Weigle, and M. L. Nel-

son. The impact of javascript on archivability. Interna-

tional Journal on Digital Libraries, 2016.

[33] J. F. Brunelle, M. C. Weigle, and M. L. Nelson.

Archival crawlers and javascript: discover more stuff

but crawl more slowly. In Joint Conference on Digital

Libraries. IEEE, 2017.

[34] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,

and V. Sekar. Klotski: Reprioritizing Web Content to

Improve User Experience on Mobile Devices. In NSDI,

2015.

[35] Z. T. Fernando, I. Marenzi, and W. Nejdl. ArchiveWeb:

Collaboratively extending and exploring web archive

collections—how would you like to work with your

collections? International Journal on Digital Li-

braries, 2018.

[36] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener.

A large-scale study of the evolution of web pages. Soft-

ware: Practice and Experience, 2004.

[37] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

automated random testing. In PLDI, 2005.

[38] A. Goel, V. Ruamviboonsuk, R. Netravali, and H. V.

Madhyastha. Rethinking client-side caching for the

mobile web. In HotMobile, 2021.

[39] H. Holzmann, V. Goel, and A. Anand. Archivespark:

Efficient web archive access, extraction and derivation.

In Joint Conference on Digital Libraries, 2016.

[40] International Internet Preservation Consortium. Access

Working Group. Use cases for access to internet

archives. IIPC Report, 2006.

[41] M. Kelly, M. L. Nelson, and M. C. Weigle. A frame-

work for aggregating private and public web archives.

In Joint Conference on Digital Libraries, 2018.

[42] R. Ko, J. Mickens, B. Loring, and R. Netravali.

Oblique: Accelerating page loads using symbolic ex-

ecution. In NSDI, 2021.

[43] J.-w. Kwon and S.-M. Moon. Web application migra-

tion with closure reconstruction. In WWW, 2017.

[44] S. Lawrence, F. Coetzee, E. Glover, G. Flake, D. Pen-

nock, B. Krovetz, F. Nielsen, A. Kruger, and L. Giles.

Persistence of information on the web: Analyzing cita-

https://developers.google.com/search/docs/advanced/javascript/javascript-seo-basics
https://developers.google.com/search/docs/advanced/javascript/javascript-seo-basics
https://github.com/archivesunleashed/aut
https://github.com/archivesunleashed/aut
https://github.com/ArchiveBox/ArchiveBox
https://github.com/ArchiveBox/ArchiveBox
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://conifer.rhizome.org/
https://archive.org/donate/
https://archive.org/donate/
https://easylist.to/
https://esprima.org/
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://httparchive.org/reports/state-of-the-web#bytesTotal
https://archive.org/details/jonah-edwards-presentation
https://archive.org/details/jonah-edwards-presentation
https://thehustle.co/inside-wayback-machine-internet-archive/
https://thehustle.co/inside-wayback-machine-internet-archive/
https://www.archive.org/about/
https://projects.propublica.org/nonprofits/organizations/943242767
https://projects.propublica.org/nonprofits/organizations/943242767
https://projects.propublica.org/nonprofits/organizations/943242767
https://api.jquery.com/element-selector/
https://api.jquery.com/element-selector/
https://www.page-vault.com/solutions/
https:/www.prepack.io
https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/state-of-javascript
https://www.stillio.com/
https://web.archive.org/web/20200802084355/https://www.bostonglobe.com/
https://web.archive.org/web/20200802084355/https://www.bostonglobe.com/
https://web.archive.org/web/20200905133311/https://dailycaller.com/
https://web.archive.org/web/20200905133311/https://dailycaller.com/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/#revisit
https://www.archive.org/web
https://webpack.js.org/guides/tree-shaking/
https://webpack.js.org/guides/tree-shaking/
https://webrecorder.net/

tions contained in research articles. In CIKM, 2000.

[45] V. I. Levenshtein. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics Dok-

lady, 1966.

[46] T. Libert. Exposing the hidden web: An analysis of

third-party HTTP requests on 1 million websites. In-

ternational Journal of Communication, 2015.

[47] J. Lin, M. Gholami, and J. Rao. Infrastructure for sup-

porting exploration and discovery in web archives. In

WWW, 2014.

[48] B. Loring, D. Mitchell, and J. Kinder. ExpoSE:

Practical symbolic execution of standalone JavaScript.

In SPIN Symposium on Model Checking of Software,

2017.

[49] S. Mardani, A. Goel, R. Ko, H. V. Madhyastha, and

R. Netravali. Horcrux: Automatic javascript par-

allelism for resource-efficient web computation. In

OSDI, 2021.

[50] C. C. Marshall and F. M. Shipman. On the institutional

archiving of social media. In Joint Conference on Dig-

ital Libraries, 2012.

[51] J. Mickens. Rivet: Browser-agnostic remote debugging

for web applications. In USENIX ATC, 2012.

[52] J. W. Mickens, J. Elson, and J. Howell. Mugshot: De-

terministic capture and replay for javascript applica-

tions. In NSDI, 2010.

[53] J. Nejati, M. Luo, N. Nikiforakis, and A. Balasubrama-

nian. Need for mobile speed: A historical analysis of

mobile web performance. In TMA, 2020.

[54] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-

nan. Polaris: Faster page loads using fine-grained de-

pendency tracking. In NSDI, 2016.

[55] R. Netravali and J. Mickens. Prophecy: Accelerating

mobile page loads using final-state write logs. In NSDI,

2018.

[56] R. Netravali, V. Nathan, J. Mickens, and H. Balakrish-

nan. Vesper: Measuring time-to-interactivity for web

pages. In NSDI, 2018.

[57] R. Netravali, A. Sivaraman, K. Winstein, S. Das,

A. Goyal, J. Mickens, and H. Balakrishnan. Mahimahi:

Accurate record-and-replay for HTTP. In USENIX

ATC, 2015.

[58] A. Ntoulas, J. Cho, and C. Olston. What’s new on the

web? the evolution of the web from a search engine

perspective. In WWW, 2004.

[59] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCa-

mant, and D. Song. A symbolic execution framework

for javascript. In IEEE Symposium on Security and Pri-

vacy, 2010.

[60] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi:

A selective record-replay and dynamic analysis frame-

work for javascript. In FSE, 2013.

[61] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic

unit testing engine for C. In ESEC/FSE, 2005.

[62] D. Spinellis. The decay and failures of web references.

Communications of the ACM, 46(1):71–77, 2003.

[63] O. Tripp and O. Weisman. Hybrid analysis for

javascript security assessment. In ESEC/FSE, 2011.

[64] X. Wang and Z. Xie. The case for alternative web

archival formats to expedite the data-to-insight cycle.

In Joint Conference on Digital Libraries, 2020.

[65] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,

and D. Wetherall. Demystifying page load performance

with WProf. In NSDI, 2013.

[66] S. Wei and B. G. Ryder. Practical blended taint analysis

for javascript. In International Symposium on Software

Testing and Analysis, 2013.

A ARTIFACT APPENDIX

A.1 Abstract

Our open-source artifact contains the scripts and the data

necessary to produce the key results from this paper. It also

contains the code for the analysis framework which informed

Jawa’s design.

A.2 Scope

The artifact can be used to confirm the three main benefits

of Jawa: a) reduced storage overhead, b) improved fidelity

by eliminating almost all failed network requests, and c) im-

proved crawling throughput.

A.3 Contents

The artifact contains all the code required to generate the

key results with respect to three metrics: storage, fidelity and

throughput. This includes a) Jawa’s filter list and a NodeJS

based crawler that leverages this filter list while loading web

pages; b) a NodeJS based analyzer that injests JS files and

instruments them to track all the JS functions executed at

runtime, the set of event handlers registered, and the return

values of browser APIs; and c) a set of scripts to automati-

cally run the above code on a given corpus of pages. These

scripts will produce the following results:

• E1: Reduced storage overhead using Jawa’s two tech-

niques: eliminating non-functional code using the filter

list, and eliminating unused code by tracking the set of

functions executed during the page load plus those re-

quired for enabling user interactions. This result will

mimic the trend shown in Figure 7.

• E2: Improved page fidelity by eliminating almost all

failed network requests. This result will reproduce the

number of failed requests and the corresponding num-

ber of bytes not fetched, as shown in Figure 8.

• E2: Improved crawling throughput by reducing the

number of IOs on the crawling index. This result will

mimic the trend shown in the “Crawling” column of

Table 3.

Apart from the scripts, the artifact contains a corpus of 3000

pages which is pre-recorded using the Mahimahi [57] tool.

All scripts are run on this corpus of pages. Finally, the arti-

fact also contains the JS analysis framework which was used

to inform Jawa’s design choices (§3).

A.4 Hosting

The source code of the artifact is hosted on https://github.

com/goelayu/Jawa with the corresponding commit ID:

“07e358eeed7cc054747271b19070b5563f3ff189”. The cor-

pus of pages is hosted on Google Drive.

A.5 Requirements

Software dependencies

The artifact has been tested on Ubuntu 16.04.7 LTS. It re-

quires installing the following dependencies, in addition to

the NodeJS dependencies included in the github repo (§A.6):

$ sudo apt-get install mahimahi google-chrome-

stable parallel r-base r-base-core

$ sudo sysctl -w net.ipv4.ip_forward=1

A.6 Installations

Setting up the artifact involves three steps: a) downloading

the source code and installing the NodeJS dependencies, b)

patching the NodeJS dependencies to use the modified ver-

sions included in the github repo, and c) fetching and extract-

ing the corpus of pages to run the analysis on.

Install the code

$ git clone https://github.com/goelayu/Jawa

$ cd Jawa

$ npm install

$ export NODE_PATH=${PWD}

Patch the dependencies

$ vim node_modules/puppeteer-extra-plugin-

adblocker/dist/index.cjs.js

add to line 73:

return adblockerPuppeteer.PuppeteerBlocker.parse

(fs.readFileSync(’../filter-lists/combined-

alexa-3k.txt’, ’utf-8’));

Fetch the data

$ cd data

download tarball from https://drive.google.com/

file/d/17j6AYgaaXMhmV0VKWUmU_kMcHibMryVV/view?

usp=sharing

$ tar -xf corpus.tar

A.7 Experiments workflow

As listed in §A.3, the artifact scripts will produce results cor-

responding to three metrics: storage, fidelity and crawling

throughput.

A.7.1 Fidelity

We provide scripts and data to exactly reproduce Figure 8

(both a and b). The corpus used for this experiment con-

tained 3000 pages. On a single core machine, it takes

roughly 20–30 seconds for each page to load and, therefore,

takes about 20 hours to load all 3000 pages once. We rec-

ommend to either run this experiment on a smaller corpus

of pages (more details below) or to use a multi-core (16–32

cores) machine to speed up the overall execution time.

$ cd ../ae

Usage: ./fidelity.sh <corpus_size> <num of

parallel processes>

$./fidelity.sh 3000 1 # depending on the number

of available cores on your machine, provide

the 2nd argument

The output graphs will be generated in the same directory:

“count fidelity.pdf” and “size fidelity.pdf”, corresponding

to Figures 8(a) and 8(b), respectively.

A.7.2 Storage

Reproducing Figure 7 requires processing 1 million pages,

which would take around a week (even with 128 CPU

cores). We instead provide scripts to process 3000 pages,

and demonstrate storage savings derived from both of Jawa’s

techniques. We provide preprocessed web pages, i.e., in-

jected with instrumentation code to detect which functions

are executed at runtime, and code to track event handlers.

You can fetch the the instrumented pages as follows:

$ cd ../data

download tarball from https://drive.google.com/

file/d/16Pt4a2l1CNxC8UBwjalgEki-UlGAnFUm/view?

usp=sharing

$ tar -xf processed.tar

You can now run the end-to-end storage analysis script:

$ cd ../ae

Usage: ./storage.sh <corpus_size> <num of

parallel processes>

$./storage.sh 3000 1 # depending on the number of

available cores on your machine, provide the

2nd argument

The above script will print three storage numbers (in

bytes) to the console. a) Total JS storage after deduplication

(as incurred by Internet Archive); this mimics the “IA*” bar

in Figure 7(a). b) Total JS storage after applying Jawa’s filter;

this mimics the “IA*+Combined Filter” bar in Figure 7(a).

c) Total JS storage after removing unused JS functions; this

mimics the “Jawa” bar in Figure 7(a).

A.7.3 Crawling throughput

We reproduce the throughput results from Table 3’s “Crawl-

ing” column. The storage script above outputs the crawling

index IOs as well. It prints the following two numbers: a)

reductions in crawling IOs for the 50th percentile page, and

b) reductions in crawling IOs for the 95th percentile page.

https://github.com/goelayu/Jawa
https://github.com/goelayu/Jawa

	Introduction
	Background and Motivation
	Poor fidelity due to JS non-determinism
	High storage overhead
	Downsides of alternate archival formats

	Overview
	Distinguishing properties of archived pages
	Challenges
	Requirements

	Design
	Improve fidelity by eliminating failed fetches
	Pruning non-functional code
	Prune unreachable code
	Summary

	Implementation
	Crawling pages
	Storing page snapshots
	Serving page snapshots

	Evaluation
	Storage
	Storage for resources.
	Storage for indices

	Fidelity
	Performance

	Verifying Page Properties
	Discussion
	Related work
	Conclusion
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Installations
	Experiments workflow
	Fidelity
	Storage
	Crawling throughput

